La première conjecture de Hardy-Littlewood

20 octobre 2014

trinity collegeLa semaine dernière, je vous ai parlé de ce qu’on appelle la deuxième conjecture de Hardy-Littlewood, qui affirme qu’il y a toujours plus de nombres premiers entre 0 et N que dans tout autre intervalle de longueur N.

Cette conjecture a de quoi intriguer, car on n’en a jamais trouvé un seul contre-exemple, et pourtant les spécialistes sont convaincus qu’elle est fausse. Mais ils estiment que pour trouver un contre-exemple, il faut aller chercher au-delà de 10^{174} !

Aujourd’hui, nous allons voir ce qui permet de faire cette estimation. Il s’agit d’une autre conjecture proposée au même moment par les mêmes mathématiciens : celle qu’on appelle la première conjecture de Hardy-Littlewood. Lire la suite »


La deuxième conjecture de Hardy-Littlewood

13 octobre 2014

hardyC’est l’histoire d’un physicien à qui on demande d’étudier la conjecture

« Tout nombre impair est un nombre premier. »

Il commence donc à regarder les nombres impairs les uns après les autres :

1 : ok.     3 : ok.    5 : ok.     7 : ok.    9 : …hum.     11 : ok.    

13 : ok.     15 : …euh.     17 : ok.     19 : ok.

Et le physicien finit par conclure :

« La conjecture est vraie; …en première approximation. »

Au-delà du fait que cette conjecture est évidemment carrément fausse, cette histoire illustre le fait qu’en mathématiques il n’y a pas de demi-mesure : soit une conjecture est vraie pour ABSOLUMENT TOUS les nombres, soit elle est fausse ! Un seul contre-exemple suffit pour démolir l’édifice.

Et pourtant aujourd’hui nous allons parler d’une conjecture un peu étrange : la deuxième conjecture de Hardy-Littlewood. Personne n’en a jamais trouvé de contre-exemple, et malgré cela les spécialistes sont convaincus qu’elle est fausse ! Mais le premier contre-exemple est attendu fabuleusement loin, au point qu’on estime que la conjecture est vraie jusqu’à au moins 10 puissance 174 ! Lire la suite »


Quand la musique est bonne, 3^12 = 2^19 [rediffusion]

26 août 2013

Nouvelle rediffusion pour l’été 2013, avec ce petit billet sur les mathématiques de la musique !

Dans ce billet nous allons voir en quoi l’existence de la musique occidentale repose sur le fait que 3 puissance 12 est (presque) égal à 2 puissance 19 ! Et pour cela, construisons un piano !

Le principe est simple : on va partir d’une première corde, dont la vibration produit une certaine note, et on va chercher successivement à construire les autres cordes du piano. Notre critère étant d’introduire de nouvelles cordes dont les sons « vont bien » avec ceux des cordes que l’on possède déjà.

Et voyons où cela nous mène ! Lire la suite »


Les nombres de Mersenne

15 juillet 2013

math_equations_300pxLes mathématiciens adorent les nombres premiers ! Non seulement ils sont à la base de problèmes simples mais encore non-résolus, comme la conjecture de Goldbach dont je parlais ici (tout nombre pair serait la somme de deux nombres premiers), mais les nombres premiers s’avèrent également très utiles dans la vie réelle, comme avec l’algorithme de cryptage RSA qui sert à protéger un grand nombre de nos secrets informatiques ou bancaires (sujet d’un autre billet).

Pour ces raisons, les mathématiciens adoreraient disposer d’une machine à fabriquer des nombres premiers, ou tout du moins d’une formule qui permette d’en construire à volonté.

Lire la suite »


Le théorème d’incomplétude de Gödel

14 janvier 2013

godelC’est en cours de philo que j’en ai entendu parler pour la première fois ! Notre prof nous faisait un cours sur la logique et ses fondements, et c’est alors qu’elle le mentionna : le fameux théorème de Gödel, celui qui prouve que quoi qu’on fasse, il existe des énoncés mathématiques vrais, mais indémontrables. Les mathématiques resteront à tout jamais un édifice imparfait !

J’en fus évidemment tout retourné et fasciné : comment était-il possible qu’un truc pareil existe ? Comment prouver ce résultat pouvait même être du domaine de la science ? Lire la suite »


0.999999…le nombre qui n’existe pas vraiment

20 février 2012

 

De temps en temps, en maths, il y a des bizarreries qui peuvent nous faire des noeuds aux neurones. Parmi mes préférées, il y a le nombre 0.999999…, où les 3 petits points désignent le fait que la suite de chiffres « 9 » se poursuit à l’infini. Voyons un peu ce nombre paradoxal.

(image Wikipédia) Lire la suite »


Quand la musique est bonne, 3^12 = 2^19

14 novembre 2011

Dans ce billet nous allons voir en quoi l’existence de la musique occidentale repose sur le fait que 3 puissance 12 est (presque) égal à 2 puissance 19 ! Et pour cela, construisons un piano !

Le principe est simple : on va partir d’une première corde, dont la vibration produit une certaine note, et on va chercher successivement à construire les autres cordes du piano. Notre critère étant d’introduire de nouvelles cordes dont les sons « vont bien » avec ceux des cordes que l’on possède déjà.

Et voyons où cela nous mène ! Lire la suite »


Suivre

Recevez les nouvelles publications par mail.

Rejoignez 5 168 autres abonnés