La suprématie quantique

La nouvelle est tombée il y a déjà plus de deux semaines, je m’attaque enfin à la suprématie quantique de Google !

Alors que puis-je dire pour compléter cette exposé ?

D’une part les « pros » de la mécanique quantique se seront probablement étranglés devant ma notation des états superposés. Je fais comme si les coefficients devant chaque état propre étaient des pourcentages, ce n’est pas le cas, il s’agit en réalité de coefficients complexes, et ce qui compte c’est le module carré. Mais bon, ceux qui le savaient déjà le savaient déjà. Les autres n’en auront probablement jamais l’usage. Ou alors ils auront droit à un « vrai » cours de mécanique quantique !

Pareil pour mon désormais habituel « à la fois » pour le principe de superposition. J’ai déjà fait une vidéo spécifique sur le sujet !

Concernant les portes quantiques, j’ai dit qu’il y en avait « beaucoup », en fait il y en a une infinité ! Mais disons que si on se limite aux portes usuelles, il y en a vite une bonne série à mémoriser. Petit détail amusant : contrairement aux portes classiques, les portes logiques quantiques sont réversibles ! On peut toujours revenir en arrière. Alors que si je vous dit que le bit de sortie d’une porte ET est 0, ça ne vous dit pas d’où on partait exactement.

Tiens d’ailleurs j’ai dit qu’on pouvait appliquer un circuit « de son choix », ce qui faisait de Sycamore un vrai processeur programmable. Techniquement chaque qbit n’est pas directement connecté avec tous les autres. Il y a une sorte de disposition des qbits et des coupleurs, qui font qu’il y a une notion de voisinage.

figure1

Les fins calculateurs auront peut-être remarqué un truc bizarre sur l’échantillonnage fait par Sycamore. On prend typiquement 10^6 échantillons alors que l’espace des états est de taille 10^{16} ! Eh bien oui, en fait on est très loin d’avoir ne serait-ce qu’un échantillon par état propre, et donc l' »histogramme » est surtout plein de 0, avec des 1 de temps en temps.

Mais ce type d’échantillon suffit pour calculer ce que les chercheurs de Google ont utilisé comme mesure de la fidélité de leur processeur : la cross-entropy qui représente en gros la probabilité qu’aucune erreur ne soit survenue lors de l’application d’un circuit. Sur les graphiques publiés, on voit que pour les cas les plus extrêmes, les valeurs sont quand même très faibles (moins d’1% !)

figure4

Ce qui signifie que dans ces régimes (et donc celui de la suprématie), le processeur passe son temps à faire des erreurs, et le résultat de la mesure est donc souvent une chaine random.

Tiens au passage signalons que toutes les chaines produites par Sycamore ont été stockées et sont disponibles, donc de futurs calculs classiques seront en mesure d’invalider le cas échéant le résultat.

J’ai été évasif sur la notion de circuit « simplifiable », il faut dire que sur ce coup je fais confiance à ce qui est écrit dans l’article. En gros un cycle consiste en l’application d’un groupe de 8 portes, et si on les choisit selon un schéma donné (par exemple ABCDABCD) il en résulte un circuit « difficile » alors qu’avec un autre schéma (EFGHGHEF) le calcul classique s’en trouve grandement facilité (circuits « patch » dans leur nomenclature)

Sur le calcul de la RAM nécessaire à stocker l’état de Sycamore, 10^16 coefficients (qui sont complexes je le rappelle !) demande disons deux fois 32 bits si on code avec des float, donc 640 millions de Go. Après on doit pouvoir gagner en faisant module et phase. IBM a une estimation un peu moins gourmande puisqu’ils annoncent 128 millions de Go pour 54 qbits. Mais je n’ai pas creusé pour comprendre la différence, on est dans le même ordre de grandeur.

Enfin sur l’estimation du nombre de qbits nécessaires pour faire du Shor en suprématie quantique, c’est tiré de l’article que je cite dans la vidéo. Une notion importante (que je n’ai pas voulu introduire) est celle de qbit « logique » vs qbit « physique ». Un qbit logique c’est en supposant que tout marche sans erreur. Et en pratique on « réalise » un qbit logique à partir d’un certain nombre de qbits physiques, le tout sous la supervision d’un code correcteur. Dans le cas dont je parle et qui est discuté dans le papier, il faudrait donc 500 000 qbits physique pour réaliser un seul qbit logique suffisamment robuste.

Si vous voulez aller plus loin :

La papier de Google dans Nature, en accès libre, et notamment les 60 et quelques pages de « Supplementary Material« 

Le blog de Scott Aaronson, qui était notamment « reviewer » de l’article de Google.

Pour la distinction qbit logique et physique et les codes correcteurs : Fowler, A. G., Mariantoni, M., Martinis, J. M., & Cleland, A. N. (2012). Surface codes: Towards practical large-scale quantum computation. Physical Review A, 86(3), 032324.

La « contre-attaque » d’IBM

L’hypothèse de Riemann

La vidéo du jour parle de l’Hypothèse de Riemann !

J’ai essayé comme toujours de rendre ça accessible, mais je suis conscient que ça n’est pas évident car cela demande au minimum de connaître les nombres complexes.

J’ai pris soin toutefois d’éviter la notation \Sigma pour désigner les séries. Il me semble que sur un épisode court ça n’apporte pas grand chose à part demander au lecteur un effort de décryptage supplémentaire. Lire la suite

Comment les avions volent-ils ?

La vidéo du jour parle d’un sujet étonnamment controversé : le vol des avions !

Bernoulli et Newton sont dans un octogone

Peut-être aurez vous été surpris d’apprendre qu’il existait de féroces débats sur les phénomènes à l’origine de la portance. J’avoue que moi-même je l’ai été quand je me suis intéressé pour la première fois à ces questions, il y a quelques années. En particulier la controverse Bernoulli vs Newton me paraissait pour le moins étonnante, vu que les deux explications me semblaient parfaitement raisonnable. Lire la suite

Crise énergétique ou crise entropique ?

La vidéo du jour parle de thermodynamique !

Les anciens auront remarqué qu’il s’agit d’une reprise un peu arrangée d’un vieux billet de ce blog que je vous invite à aller lire si vous voulez quelques compléments.

La présentation que j’ai faite des grands principes de la thermo est évidemment un peu « à la hâche », mais ça permettra j’espère de donner quelques idées à ceux qui ne connaissaient pas le sujet. (Oui car comme certains semblent trop souvent l’oublier dans les commentaires, mes vidéos sont par principe destinées à ceux qui ne connaissent pas déjà le sujet !) Lire la suite

Comment lire une étude scientifique ?

Dans cette nouvelle vidéo, je m’attaque à ces fameuses « études américaines » auxquelles ont fait dire tout et son contraire…

Détail amusant : quand j’ai écrit le script, j’ai imaginé au hasard un sujet d' »étude américaine » : le heavy metal et la dépression. Or après j’ai vérifié, il existe bien des publications ayant étudié cette association ! D’ailleurs les résultats ont l’air subtils car en non-randomisé, il semblerait que l’écoute du metal soit plutôt corrélée avec les symptômes dépressifs, mais qu’en traitement randomisé il ait un effet bénéfique. Paradoxal, non ? Mais bon j’avoue que je n’ai pas creusé.

Quelques petits compléments d’usage, pour ceux qui voudraient aller plus loin… Lire la suite

La superposition quantique : un électron peut-il être à 2 endroits à la fois

Aujourd’hui, on s’attaque enfin à la fameuse question de la superposition quantique, et de la manière dont on l’interprète avec nos conceptions intuitives.

Comme d’habitude dans ce billet, je vais ajouter quelques compléments techniques et détailler certains points sur lesquels j’ai simplifié, voire carrément dit des trucs faux ! Mais avant cela, je voudrais revenir sur la motivation initiale.

Mais pourquoi parler de tout ça ?

Il y a en physique quantique comme ailleurs des débats entre les spécialistes sur la bonne manière de vulgariser certains concepts. L’idée de superposition quantique est une de celle qui fait couler beaucoup d’encre chez les physiciens.

Vous l’aurez compris, je fais partie de ceux qui sont totalement à l’aise avec cette idée d’ « être à plusieurs endroits à la fois » ou bien « être à la fois mort et vivant » (dans le cas du chat de Schrödinger). Mais les chercheurs qui vulgarisent cette discipline ne partagent pas tout cette vision. Je me souviens par exemple d’une discussion avec un chercheur en physique qui estimait lui que cette formulation était intolérable, même dans une optique de vulgarisation grand public. Lire la suite

La physique théorique et « La vraie nature profonde de la Réalité »

Il y a quelques jours, l’ami MrPhi a publié une vidéo sur la notion de réalisme scientifique. Il y précise notamment ce qu’est l’«anti-réalisme » en science, et j’y figure en bonne position en tant que porte-étendard de cette vision. Il faut dire que je l’ai bien cherché, puisque comme vous pouvez le voir dans sa vidéo, j’ai plusieurs fois tweeté à ce sujet !

Comme je n’arrivais pas à faire un commentaire de taille raisonnable sous sa vidéo afin de préciser ma pensée, je me suis dit que je pouvais tout aussi bien en faire un billet de blog, car c’était un sujet que je voulais traiter depuis longtemps !

Pour ceux qui le souhaiteraient, voici le lien vers sa vidéo et son billet de blog, même si je vais faire en sorte que ce que je raconte ici soit compréhensible sans l’avoir vue. Lire la suite