La première conjecture de Hardy-Littlewood

trinity collegeLa semaine dernière, je vous ai parlé de ce qu’on appelle la deuxième conjecture de Hardy-Littlewood, qui affirme qu’il y a toujours plus de nombres premiers entre 0 et N que dans tout autre intervalle de longueur N.

Cette conjecture a de quoi intriguer, car on n’en a jamais trouvé un seul contre-exemple, et pourtant les spécialistes sont convaincus qu’elle est fausse. Mais ils estiment que pour trouver un contre-exemple, il faut aller chercher au-delà de 10^{174} !

Aujourd’hui, nous allons voir ce qui permet de faire cette estimation. Il s’agit d’une autre conjecture proposée au même moment par les mêmes mathématiciens : celle qu’on appelle la première conjecture de Hardy-Littlewood. Lire la suite

La deuxième conjecture de Hardy-Littlewood

hardyC’est l’histoire d’un physicien à qui on demande d’étudier la conjecture

« Tout nombre impair est un nombre premier. »

Il commence donc à regarder les nombres impairs les uns après les autres :

1 : ok.     3 : ok.    5 : ok.     7 : ok.    9 : …hum.     11 : ok.    

13 : ok.     15 : …euh.     17 : ok.     19 : ok.

Et le physicien finit par conclure :

« La conjecture est vraie; …en première approximation. »

Au-delà du fait que cette conjecture est évidemment carrément fausse, cette histoire illustre le fait qu’en mathématiques il n’y a pas de demi-mesure : soit une conjecture est vraie pour ABSOLUMENT TOUS les nombres, soit elle est fausse ! Un seul contre-exemple suffit pour démolir l’édifice.

Et pourtant aujourd’hui nous allons parler d’une conjecture un peu étrange : la deuxième conjecture de Hardy-Littlewood. Personne n’en a jamais trouvé de contre-exemple, et malgré cela les spécialistes sont convaincus qu’elle est fausse ! Mais le premier contre-exemple est attendu fabuleusement loin, au point qu’on estime que la conjecture est vraie jusqu’à au moins 10 puissance 174 ! Lire la suite

Le nombre d’Erdös-Bacon-Sabbath

erdos-bacon-sabbathParmi les petits jeux auxquels s’adonnent les mathématiciens dans leur temps libre, il y a calculer leur nombre d’Erdös.

Ce nombre mesure la distance qui les sépare du célèbre mathématicien hongrois Paul Erdös du point de vue des collaborations scientifiques.

La règle du jeu est simple :

  • si vous êtes Paul Erdös, votre nombre d’Erdös est 0;
  • si vous avez écrit un article scientifique avec Erdös, votre nombre est 1;
  • si vous avez écrit un article scientifique avec quelqu’un dont le nombre est 1, votre nombre est 2;
  • et ainsi de suite…

Lire la suite