L’hypothèse de Riemann

La vidéo du jour parle de l’Hypothèse de Riemann !

J’ai essayé comme toujours de rendre ça accessible, mais je suis conscient que ça n’est pas évident car cela demande au minimum de connaître les nombres complexes.

J’ai pris soin toutefois d’éviter la notation \Sigma pour désigner les séries. Il me semble que sur un épisode court ça n’apporte pas grand chose à part demander au lecteur un effort de décryptage supplémentaire.

La transformée de Möbius

Le seul endroit où je me suis permis de le glisser, c’est dans la définition de la transformée de Möbius que je n’ai donné de toute façon qu’en « note de bas de page ».

Une petite précision concernant ladite transformation. A première vue, on pourrait croire que la somme comporte une infinité de termes, ce qui rendrait non-triviales les questions de convergence. Mais il n’en est rien ! Quand n augmente, x^{1/n} diminue et tend vers 1. Or la fonction Li() est nulle en dessous de 2. Donc quelque soit x, la transformée ne comporte qu’un nombre fini de termes.

Je suis passé rapidement sur la formule d’Euler, avec son produit infini. Euler en a fait une très belle démonstration (un peu « à la main »), avec des opérations de base : si vous ne l’avez jamais vue, je vous recommande de la lire.

L’impasse sur le prolongement analytique

Passons au gros morceau : le prolongement analytique, sur lequel j’ai fait le service minimum. ElJJ et 3Blue1Brown font ça très bien, donc je ne me suis pas risqué à donner des détails. Ce qui d’ailleurs aurait été compliqué sans rentrer frontalement dans l’analyse complexe.

Toute la beauté de la chose réside dans l’unicité du prolongement : a priori on pourrait imaginer prolonger la fonction de n’importe quelle façon ou presque, mais si on impose la contrainte supplémentaire que le prolongement soit « analytique », alors il est unique.

Ah oui, sinon je suis sûr que quelques matheux ont dû s’étrangler en m’entendant dire que l’on prolongeait la fonction sur tous le plan complexe, en fait c’est vrai sauf en z=1. Mais bon, c’est vrai « presque partout ».

Et non, je ne couvrirai pas le débat sur -1/12, j’ai déjà donné !

Où trouver des zéros ?

Sur la répartition des zéros sur la droite critique, je dis que certains sont parfois très proches les uns des autres mais sur les premiers que j’ai tracé, rien de très flagrant. Mais par exemple voici deux zéros consécutifs (enfin leur parties imaginaires) :

7005,0628…

et

7005,1005…

De façon générale, on peut étudier plein de chose sur l’espacement des zéros : de l’espacement moyen au fait que des espacements arbitrairement petits ou grands.

J’ai aussi glissé à la fin de façon imprécise le fait que « l’immense majorité des zéros est très proche de la droite critique », ce qui ne veut rien dire de précis. Concrètement, on sait qu’au moins 40% des zéros sont sur la droite, et que pour tout \epsilon, « presque tous » les  zéros sont dans une bande de largeur \epsilon.